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Let H L = - d 2 / d t  2 + q(t, o~) be an one-dimensional random Schr6dinger opera- 
tor in ~2(_ L, L) with the classical boundary  conditions. The random potential 
q(t ,w) has a form q(t,~o)= F(xt) , where x t is a Brownian motion on the 
Euclidean p-dimensional torus, F :  S ~ R  1 is a smooth function with the 
nondegenerated critical points, mins~F = 0. Let NL(X ) = ~ ( L ) < x l ( X i (  L, ~) are 
the eigenvalues of HL) be a spectral distribution function in the "volume" 
[ - L ,  L] and N(X)= l imL_~(1/2L)Nc(Tt  ) be a corresponding limit distribution 
function. 

Theorem 1. If L ~  ~ then the normalized difference N~(~ )=  [NL(~ ) -- 

2 L .  N ( X ) ] / 2 ~  tends (in the sense of Levi-Prokhorov) to the limit Gaussian 
process N*(X); N * ( X ) = 0 ,  X ~< 0, and  N*(2t) has  nondegenera ted  finite- 
dimensional distributions on the spectrum (i.e., X > 0). 

Theorem 2. The limit process N*(),) is a continuous process with the locally 
independent  increments. 

KEY WORDS: Random Schr6dinger operator; spectrum; limit distribution 
function; central limit theorem; state density. 

INTRODUCTION 

In this paper we investigate the random one-dimensional Schr6dinger 
operator 

d 2 
H =  - - -  + q(t,,0), t e R~,,~ ~ f~ (1) 

d t  2 

where (~2, 0y, p )  is the probability space and q(t, ~) is a stationary (in the 
narrow sense) random process. One of the basic objects of interest from the 
point of view of physics and connected with this operator is the limit 

291 

0022-4715/81/0600- 0291 $03.00/0 �9 1981 Plenum Publishing Corporation 



292 Re;~nlkova 

distribution function 

N (X) 
N(~) = lim (2) 

L-~r 2L 

where NL(X)= ~,(L)<xl; 2ti(L, w) are the eigenvalues of the restriction H L 
of the operator H to the Hilbert space ~2[_L,L] with some classical 
boundary conditions, for example, Dirichlet conditions 

y ( -  L)  = y ( L )  = 0. (3) 

L. A. Pastur (see Ref. 1) has proved the existence of the nonrandom limit 
N(X) almost surely. He supposed that the potential q(t,~o) must be metri' 
cally transitive and must almost surely have a lower boundary. L. A. Pastur 
used substantially the Schturm oscillation theorem and Birghof-Khintchin 
ergodic theorem. 

The formula (2) may be considered a certain law of large numbers for 
the sequence of spectra of the operator H L. The natural (and interesting 
from the point of view of physics) question is one about the estimate of the 
remainder term in (2). We shall study this problem for the special class of 
Markov-type potentials q(t, ~o) which were introduced in Ref. 2 and studied 
in Ref. 3 at great length. (To be precise, we consider a somewhat narrower 
class of potentials.) 

1. In our work the following two results will be established which 
characterize the Gaussian fluctuation NL(~ ) for this special class of the 
random Schr6dinger operators. 

Theorem 1. For every compact interval A E R 1, the distributions of 
the normalized differences 

N L (h) - M N  L (X) 
N~ (2~) = (2L)I/2 , ~ e A 

weak-converge in C(A)I to the distribution of the continuous Gaussian 
process N*(h). The limit process N*(~) has the following properties: N*(h) 

0 for ~ < 0 and the finite-dimensional distributions of N*(~,) are nonde- 
generate if ~ > 0. The correlation function of the process N*(~) is defined 
by the formula (11) (see Lemma 3). 

Remark  1. Since the process N~_(X) is discontinuous the term weak 
convergence wants some specification. As usual we mean the following: the 
normalized differences Nt(h), ~ ~ A, can be represented in the form N~(X) 
= N~(h)+ eL(A), where eL(h)~0 uniformly in [0, + ~ )  (actually leL(h)] 

< C[ (L),  the processes ATe(X) are continuous and their distributions con- 
verge to the distributions of the limit Gaussian process (in Levi-Prokhorov 
metric on C(A)). 
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Theorem 2 .  The limit process N*()t), h > 0, has the local Markov  
property .  Moreover ,  N*(X) has the locally independent  increments.  The  last 
means  that  for every fixed ), > 0, n > 0 the r a n d o m  values 

N*()t + t I + t2) - N*(2t + t,) 

( D [ N * ( ) t  + t I "Jr- t 2 ) - -  N*(?t + t , ) ] }  l/2 . . . . .  

N*()t + t 1 + �9 �9 �9 + t n + l )  - N*(X + t 1 + �9 �9 �9 + t,) 

{ D [ N * ( X + t  1 +  - ' -  + t n + , ) - N * ( T t + t , +  ' ' '  + t n ) ] }  1/2 

(t i > 0, i = 2 . . . . .  n, m a x i ] t i [ ~ 0 ,  the sign of t I is of no impor tance)  are 
asymptot ica l ly  independent .  

T h e o r e m  2 agrees well with one of the results of Ref. 4 concerning the 
local Poisson structure of the spec t rum of H in B Z ( _ L , L ) ,  whenever  
L--~ oo. 

2. Let  K =  S" be the Eucl idean v-dimensional  torus and  let xi, i 
= l . . . .  , v, be the na tura l  coordinates  on S ~, 0 < x i ~< 7r. The  points  0,~r 
are identified, x,, t E R 1, is a Brownian  mot ion  on S"  having the s ta t ionary  
(uni form on S ~) one-dimensional  distr ibution; F :  S ~ R  ~ is a smooth  
"nonf la t "  funct ion (the last means  that  for every x 0 c S ~ there exists a 
n u m b e r  n = n(Xo) such that  d"F(xo) v s 0). Clearly, the process 

q(t, o~) = F(xt) 

is the s t a t i ona ry  one with the un i fo rmly  s t rong mix ing  condi t ions  
(coefficient of mixing decreases exponentially).  Let us also suppose that  
minxEs,F(x)  = 0. It  is p roved  in Ref. 2 that  under  this condit ion the 
spec t rum of H in ~2(R 1) coincides with the half-axis g = [0, o0). The  inner 
par t  of the spec t rum we shall denote  by S, that  is, S = (0, oo). 

We  int roduce a phase  0x(s ) of the equat ion Hy = Xy as usual by  the 
fo rmula  

0x(s ) = arccot  ~ ,  , O~(s) ~ S l (4) 

As is well known  (see Ref. 1), 

dOx - cos20x(s) + [X - F(xs)]Sin2Ox(s) (5) 
ds 

and (by the Schturm theorem) 

NL(X ) = 1 ( c  /cos20x(s) + [)t -- F(Xs) ]Sin2Ox(S) } ds 
";7" d _  L ~ 

7r + R(L) ,  0 x ( -  L)  = ~- (6) 

where IR(L)I < 1. 
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Thus we have reduced the analysis of the behavior of NLOk ) at the 
infinity to the analysis of the additive functional from the process (x,, Ox(t)). 
In the future we shall also use the properties of the more general process 

x , ( t )  = (x, ,Ox,( t )  . . . . .  < . . .  < 

It is easy to see that the process X~(t) is the Markov diffusion process (on 
the compact K, = S" • (S 1),) having the infinitesimal operator 

A, = ~1 Ax + ~ [cos20i + (~k i -  F(x))sin20i] ~O (7) 
i=1  

and the natural periodic boundary conditions. This operator is degenerate 
(elliptic-parabolical), hence the problem of the existence and smoothness 
of transition densities p ( t , ( x , 0 1 , . . . ,  On) , (x ' ,O~, . . . ,  0,~)) with respect to 
the Euclidean measure on S ~ • (S 1)n is nontrivial. We shall rely here on 
the general theory based on H6rmander's ideas of Ref. 5. This theory was 
first used in a similar situation in Ref. 2. 

The following two lemmas generalize the results of Refs. 2 and 3, 
where they were proved for n = 1 and formulated for n = 2. 

Lemma 1. If X 1 < �9 �9 �9 < X,, then for t > 0 there exists the smooth 
(in all arguments) transition density p(t ,  (x, 01 . . . .  , On), (x', O; . . . .  ,0,~)) of 
the process X,( t ) .  This density is the fundamental solution of the equation 

ap_ 
at A ,p  

in the cylinder (0, ~ )  x (S" x (S i),). 

I . e m m a  2 .  I f  0 < X l < X2 < " �9 " < ~n ( i .e . ,  X i E S ,  i = 1 . . . . .  n) ,  

then for t > t o = t0(X 1 . . . .  , Xn) 

p ( t , ( . , . ,  . . . .  . ) , ( . ,  . , . . . ,  . ) )  > o 

Lemma 1 enables us to see that the multidimensional process (x t, 
0x,(t ) . . . .  , Ox.(t)) satisfies the Do~blin condition for all X~ < - . .  < X,. 
According to Lemma 2 this process is uniformly ergodic and connected 
o n  ~. 

Proof  o f  l_emma 1. Let us introduce the vector fields on S ~ x (S ~)": 

a i = 1 ,  p S i - -  ax  i . . . . .  

r =  [cos 0, + ( x , -  a0, 
i = l  

By the general theory of Ref. 5, in order to prove Lemma 1 it is 
sufficient to show that the Lie algebra 91 of vector fields which is general- 
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ized by the fields X i, i = 1 . . . . .  u and  all possible commuta to r s  of the fo rm 
[ . . .  [X i . . .  [X k, Y ] . . .  Y . . .  ] (the field Y itself is not  included in the 
n u m b e r  of generators)  has the m a x i m u m  dimension n + v at the every 
point  of the manifo ld  S " •  (S l) n. Let  us stress that  this a lgebra is con- 
structed over  the ring of the infinitely differentiable functions. 

N o w  we fix a point  (x0, 0 ~ ~ S ~ x (S  l)n and consider  the c o m m u t a -  
tors of the form [Y, X i , , . . . ,  Xi, ] = Z/,l! . . , i , .  The  simple computa t ions  
show that  

OkF(x) 0 
Zi(" l ! '" ik  ~" ( - - 1 ) k  OXh " : -  ~XiA. i = 1  ~ sin20/ OOi 

Because of the "nonf la tness"  of F(x)  there exists a n u m b e r  k = k(xo) such 
that  

OkF(x) x = _ o 

XO 

Since the last derivative is not  equal  to zero in some ne ighborhood  of 
(x 0, 0~ the field ~7= lsin20i(O/OOi) belongs to 91 (in the fixed ne ighborhood  
of the point  (xo,0~ all the following discussions will be held in this 
neighborhood) .  

Let us construct  the c o m m u t a t o r  [Y, Zi(]!. . ,  i~] = Zi(~2,!.., i~. One can see 
that  Z/,.2!..,~ = ~,']=lsin20~(O/OOi)~ 91. Subtract ing the field C - Z  (1) (C 
is a su i tab le  coeff ic ient )  f r o m  the f ield Z} 3~ i = [Y ,Z} ,  2) i~] = 

2 I , - . . ,  ~, ^ , . . . ,  ~]7_12[sin Oi()t i - F -  1) - (1 - sin2Oi)](O/OOi)we have  Z (3) = ~ ] ~ 4 ~  
(X~sin20~- 1)(O/O0s)E 9I. After  commuta t i ng  [Z  (3~, Y] we note  that  Z 
=~,7=lX2sin20i(O/OOi) E91. By induct ion it is easy to show that  for  

k />2 ~ ( 2 k + 2 )  = Z ~ = l X k s i n 2 0 ~ ( 0 / a 0 i )  E91 a n d  E (2k+1~ = Z ' ~ = I  
[ U s i n 2 0 i - x [ - l +  P(X~,F)]O/aO~) where P(Xi, F)  is the mul t inomial  of 
( k -  2)th degree. Let  us suppose  now tha t  0 ~ = (0 ~ . . . . .  0 ~  E (S1) n 
is such that  s i n 2 0 ~  ~ 0 . . . .  , s in20~162  Then  (using a p roper ty  of the 
W a n d e r m o n d  de te rminant )  we find tha t  the fields X l . . . . .  X , , Z  (2), 
2~ (~) . . . . .  2~ (z") fo rm a basis of the m a x i m u m  dimension at  (xo, O ~ 

S ~ • (S~)L If for  some i sin20~ ~ = 0, then we can construct  the desirable 
basis using the fields 2~ (2k+l), k = 1 . . . . .  n. L e m m a  1 is proved.  

Proof of Lemma 2. 

(a) 

(b) 

(c) 

One can find such a 1 . . . . .  a n E R, that  

0 < a  I <  . . .  < a  n < m a x F ( x ) ;  
x E S  ~ 

al . . . . .  an < ~l ; 

By = (x, - 

are rat ionally independent  for all i, j --- 1 . . . . .  n. 
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Evidently, this may be achieved by various methods.  
The system 

d2yl 
dt 2 - (~1 - ai)yl 

d y. 
- ( ~ , - a i ) y  n , t ~ ( t  i l , t i ) , t o = O , t , =  T , i =  1 . . . .  n, 

dt 2 

with the piecewise constant  coefficients has an exact solution. We denote 
the set of phases of these equations at the point T by (01(T)  . . . . .  On(T)). 
We consider the mapping  ( t l , . . . , t ~  l , T ) - o ( O l ( t l  . . . . .  t n _ l , T  ) . . . . .  
O.(t I . . . . .  t~_ I, T)) .  Both the Weil theorem about  the irrational winding of 
the torus and the rational independence of fly = (h i - as-) 1/2, i, j = l, . . . ,  n, 
yield that  the image of the symplex (0 < t I < t 2 < �9 �9 �9 < t n_l < t. = T) 
for sufficiently large T coincides with the torus ($1) n by such mapping.  
F r o m  this simple fact it follows immediately that for every initial point  
(xo, O~ . . . , 0 ~  distribution of the process X . ( t )  = (x.Oa~(t),  . . . ,  O~.(t)) 
at the momen t  t = T is dense on S" • (S1) n. In  fact, let us consider some 
point  (x 1, 011 . . . . .  0~) E S ~ • (S 1). and  some ne ighborhood  V ~ (x 1, 
0 ~ , . . . , 0 ~ ) .  We  choose  A 1 . . . . .  A n E S"  such  tha t  F ( A i ) = a i ,  i 
-- 1 . . . .  , n, and  analyze the following "behavior"  of the process x t E S" 
for some sufficiently small numbers  8 o . . . . .  6n,e 1 . . . . .  e.+ 1. Dur ing  the 
time 80 the process x t moves f rom x 0 to the c I ne ighborhood  of A 1 and  
remains there f rom the momen t  80 till the momen t  t 1 , then during the time 
which does not exceed 81 it moves f rom the e 1 ne ighborhood  of A 1 to the e 2 
ne ighborhood of A 2. I t  remains there till the momen t  t 2 . . . .  , at the last 
but  one step [in the interval ( t ._  1, t,,_ L + 8._ 0] it moves to the en neighbor-  
hood  of A. ,  where it stays till the momen t  t. - 8., and  lastly during the 
time f rom t. - 8. till t. = T it goes to the C.+l ne ighborhood  of the point  
A 1, where it stays till the momen t  t. = T. 

Clearly, this mot ion has a positive probability. We are left to choose 
60 . . . . .  8,,el . . . . .  e,+l sufficiently small and using the above given re- 
mark to fix the desirable t 1 . . . . .  t ,_ ~. N o w  by the cont inuous dependence 
of the solution of the differential equation on the parameters  we have that 

P ( T , ( x o ,  O ~ 1 7 6  . . . . .  0o')) > 0  (*) 

We shall show that 

p ( 2 T , ( . , . ,  . . . .  �9 ) , ( - , . ,  . . . .  . ) )  > 0 (**) 

Indeed ,  let us suppose  that  it is no t  true. Then  there are points  
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(Xo, 0 ~ . . . . .  0 ~ and (x] ,  0, l . . . .  , 0 / )  such that 

p ( 2 T , ( x o , O  ~ . . . . .  O ~  1 . . . .  , 0 ) ) )  

=fe(~,(xo,e~ . . . . .  e~ . . . . .  < ) )  

Re( T,(x,O, . . . . .  On ), (X[ , 0 1 . . . . .  ~1 ))  

• dx d01. . . dO, = O 

This yields immediately that f l (T,  (x,  0] . . . .  ,0n), (x 1 , 0j I . . . . .  0))) ~ 0 
(as the funct ion from the arguments  (x,O 1 . . . . .  0~)). Applying the Kol- 
m o g o r o v - C h a p m a n  equat ion once more  we see that 

p (  T + ~',(X, el . . . . .  0 n ), (Xl, 0 l' . . . . .  0) )) 

=jp(~,(x,e,~ . . . . .  e . ) , (~ ,g ,  . . . . .  r  

x e ( T , ( ~ , <  . . . . .  r  . . . . .  < ' ) )  

x d~dgl . . .dgo  =-0 

But the last equality can be written down as 

0 - j e ( ~ , ( x , e ,  . . . . .  < ) , ( ~ , 4  . . . . .  r  

X fl(r (07,• . . . . .  r  . . . . .  r  

This means that p( r , (Y ,O ,  . . . . .  On),(Xl,011 . . . .  , 0 / ) )  ~ 0. But f rom the 
definition of the fundamenta l  solution of a differential equat ion it follows 
that 

e ( ~ , ( ~ , r  . . . . .  r  1 . . . . .  < ' ))~-0 

- - , 8 (~ , r  . . . . .  r  . . . . .  e~ 

We came to a contradict ion which proves L e m m a  2. []  

Coro l l a ry  1. I f 0 < a  1 <  - . .  < h n ,  then 

p ( t , ( X ,  O l , . . . ,  On),(Xl,011 . . . . .  01 ))t___~a "-'-~ ~)~ . . . . . .  ~ ( X l , 0 l , . - . ,  01 ) 

with the exponential  speed. The  limit invariant  density is the unique 
positive solution (within normalizat ion) of the equation A * %  . . . . . .  ~, = 0. 

R e m a r k  2. One can show, that  for  any )~ < �9 �9 �9 < h.  the process 
(x,, Oa](t ) . . . .  , Oa.(t)) has the unique ergodic class so that  

p ( t , ( . ,  . ,  . . . , . ) , ( x , e ~  . . . . .  e n ) ) , _ , = - ~ ,  . . . . .  ~ ( ~ , e ,  . . . . .  < )  
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(with the exponential speed). But (see Ref. 2) if at least one of X+ ~< 0, 
i = 1,2 . . . . .  n, this class is a proper subset of the compact S" x (S 1)n. 

3. The following important limit theorem belongs essentially to S. V. 
Nagajev (see Ref. 6). Our formulation differs from the Nagajev's theorem 
in some technical details. 

Lemma 3. Let K be a compact, O, a dense measure on the Borell o 
algebra ~ (K) ,  and let xt, t >1 O, be the Markov homogeneous process 
having a continuous transition density p(t, x, y) relative to O. If there is t o 
such that p(to, x, y) > O, then 

(a) p(t, x, Y)t-+~ --> ~(Y) (it converges with the exponential speed in the 
metric of C(K)). 

(b) If the function f = ( f l  . . . . .  fn): K-->RI is measurable and 
f[lfl]2do < oe, then 

(b 0 Mxfot f(xs)ds= ts + O(1) 

(b2) cov[ fo' f&,)ds, fo' fj(xs)dsJ = tBr + O(1) 

(uniformly in x E K). 
(c) If det{B~} > 0, then the distribution of the normalized vector 

{ ~,(t) = f t~  tfrd~'' ,i = l, . . . , n} 

weak-converge to the nondegenerate Gaussian n-dimensional distribution 
with the mean equaling to 0 and covariance matrix B = (B~j)/j= 1 . . . . . .  �9 

(d) If detB = O, then there exist the constants c I . . . . .  cn such that 

when t ~ oo. 
To use Lemma 3 while examining the process N~(h)=  [NL(X ) 

-- MNLQt)]/(2L) 1/2 we must effectively !compute the second moments of 
the functionals 

f_a [cos20~,(s ) + (h~- F(x,))sin20~,(s)]ds= qo~(t) 
L 

One can see that 

1 .,-fr [ x ( ) +  _ M(x,O)~- s ? cos20 s (h F(xs))sinZOx(s)]ds 

= fs, xs,[COS20 + ( h -  F(x))sin2O]~rx(x,O)dxdO (8) 
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We denote cos20 + 0 t - F(x))sin20 by fx(x,O) and fx(x,O) - fs, xslfx(x,O) 
. %(x,O)dxdO by .[x(x,O). Clearly, f/~%dxdO = 0, hence there exists the 

unique solution of the equation 

1 Aux(x,O) +f~(x,O) aUx(X'O) Axux(x'O) = 2 30 -/x(x'O) (9) 

Applying the Ito formula, it is easy to obtain that 

ux(x,,Ox(t))- ux(xo, O~) 

= s + s 

where w s is the v-dimensional Wiener process on the torus S". We may also 
hold that w s is a Wiener process on R", since the function ua(x,O ) can be 
considered as a periodic function on R ~ • R ] in each argument (with the 
period ~r). 

From the formulas (8) and (10) it immediately follows that for / , ,  )t,/ ,  
va2t, 

R(/,,)~) = lim 1 I l L  L f(x,,O~(s))ds ]  cov ( 
_ 3 _ L  tL 

= lim 1 ( (L  (L  dw,] /~-~o~ 2-s coy gradxuxdw,, gradxu 
\ d - - L  O - - L  U ] 

lim 1 L = M (  (gradxux,gradxu,)ds 
L---> ~a 2 - s  J - L 

= fs~x s ' x  s ~(grad~ ux(x' Ox)' gradx u" (x '  0, )) 

• )axdO  dO. (ll) 

To obtain this result we have used Corollary 1. 
The formula (11) gives us the correlation function of the process N*(X). 

But neither the existence of this process nor a kind of the convergence to it 
have not yet been established. 

4. Let us pass on directly to proving Theorem 1. Since for )~ < 0, 
NLO 0 -- 0, then (without losing generality) it is sufficient to carry out all the 
discussions for the interval A of the axis [0, oo). 

The functions ua(x,O ) are continuous in (x,O,X), hence they are 
bounded. The transition density pa(t, (x, 0), (x 1 , 01) ) converges to the invari- 
ant density ~rx(x,O) uniformly in 2~ E A (except a neighborhood of )t = 0, 
but px(t, (x, 0), (x l, 01) ) is uniformly bounded, therefore the D6eblin condi- 
tion holds uniformly in )t). 
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From these facts it follows that 

NL(X) - MNL(X) 
N~(X) = (2L)1/2 

[ ] /  R,(?t,L)(2L) 1/2 = l_fL (gradux(xs,O~,(s)),dws) (2L)1/2+ 
'27 - L  

where R~(X, L) is uniformly bounded in ?t ~ A as L ~ ~o. This means that to 
prove the weak convergence of the distributions of N[(X) in sup metric, we 
must show the weak convergence for the sequence of the continuous 
processes (and martingals at that) 

N~. (h) - 1 ( L  (grad ux(x,, 0x(s)) , dws) (12) 
~r(2L) 1/2 J - L  

According to the general Prokhorov's theorem (see Ref. 7) to finish the 
proof of Theorem 1 we are left to establish two conditions: (a) the 
convergence of the finite-dimensional distributions of the processes Nt(X), 

A, to the Gaussian limit distributions, and (b) a compactness of the 
distributions of the processes ATe(h) in C(A). 

Lemma 3 yields the weak convergence of the finite-dimensional distri- 
butions of N~()t),?t E A to the corresponding finite-dimensional distribu- 
tions of the Gaussian process N*(X) with the null mean and correlation 
function RO t,/~) [see formula (11)]. 

We verify the fact that these finite-dimensional distributions are non- 
degenerate. To achieve this we use Lemma 3, Part (c). 

Let 0 < X l < �9 �9 �9 < ~k n. We consider the function f =  ~7=lcJx,(x, Oi) 
and the corresponding additive functional 

~ ( L )  L n 

Repeating the discussion given in Section 3 we see that 

lim - -  - ( grad~Tx . . . . .  x.(x,O, . . . . .  0.)  
L~,o~ 2 L  j s ~ •  " 

~x, ..... x dx dO 1 �9 �9 �9 dO. 

where z7 x ... . . .  x.(x, 01 . . . . .  0.) is the solution of the equation 

i=1  

D~(L) 
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Plainly, 

u \ ,  . . . . .  . . . , o , )  = )_2 ciu (x,O,) 
i = 1  

Since ~r x .. . . . .  x~ (x, 01 , . . . ,  On) > 0, therefore 

k cigradxu~(x, Oi) =-- 0 
i = 1  

whenever limL_~oo[D~(L)/2L] = O. 
From this fact it follows that 

gradxua,(x, Oi ) = gi(x) 

where gi, i = 1 . . . .  , n, are some vector functions and 

,,x(x, 0 ) = Gx(x) + hx(O ) 

which leads to a contradiction with the equation 

1 zXux +fx(x,O) Oux -gg = L ( x , 0 )  

Now let us check an equicontinuity of the family of the processes N~()t), 
which provides us with the desirable compactness. By the well-known 
version of the Kolmogorov theorem about the continuity of the random 
processes it is sufficient to establish that MxlkT~0, + h) - ~7~(~k)] 4 < const 
�9 hl+~,a  > 0 (const and a are independent of L). 

The inequality 

T P T 2 p /2  

(see Ref. 8, p. 432) shows that one must prove the following formula (as in 
case of the Gaussian processes): 

M~]AT~ (X + h) - AT~ (X)[ 2 -<< const �9 h P, fl > 0 

But 

Mxf )(x + h) - (X)I 2 

- ~-s {s _ gradxux(xs,Ox(s)),dw:]} 

1 _ ( L  M~lgradxux+h(xs, Oa+h(s)) _ gradxua(x,,Ox(s))12ds 
2L  a - L  



302 Re~nlkova 

We estimate the difference between gradients under the interval. From 
H6rmander's theory we obtain that the function ux(x,O ) is infinitely 
differentiable in all three arguments: X ~ A, (x,O) ~ S ~ • S 1. Hence, 

Igradxux+h(x,, OX+h(S)) -- gradxux(x,, 0x(s))[ 

< IgradxUx+h(X,, Ox(s)) -- gradxux(x~, 0x(s))] 

+ I grad~ux+h(x,, 0 x+h(s)) - grad xu x+h(xs, 0x(S))l 

< Cllhl + CzlO~,+h(s) - Ox(s)l 

< C,Ih] + C3]Oa+h(s)-Oa(s)l t/2-~, �89 > y > 0 

where the constants C 1, C 2, C 3 are independent of L. So, 

1 f ; .  M~lgrad, ux+h(x,, Ox+h(S)) _ grad, ux(Xs, 0x(s))12 ds 
2L f 

.< ~ Mx[2C?lhl 2 + 2 C ~ l O ~ + h ( s )  - 0~(~)11-~] a~ 

1 L 
C4hhl 2 + Cs-i-  s f 'rMxlOx+h(s) - Ox(s)l~-2~ds. 

We may now use the important estimate (see Ref. 3), Corollary 2'): 

[ OX+h(S)--OX(S) 1-2~'OX+h(_L)=Ox(_L)] <~ C(.y) 

and thus finally obtain that 

gxl~7~(X + h) -/V~, (X)l 2 ~< C6('g)[hl l-2v (13) 

Theorem 1 is proved. 

Remark  3. The transition from IOX+h(S)--0x(S)I to [OX+h(S ) -  
Ox(S)I 1/2-~ was necessary because of the fact that 

o~ , +~( s )  - o~,(~) t 
M~ 

(see Ref. 3). 

Remark  4. The inequality (13) means the continuity of the limit 
process N*(X) and proves that this process satisfies the H61der condition 
with the index 1/2 - , / for  any 7 > 0. As we shall see a bit later, Theorem 2 
[about the local independence of the increments of the process N*Qt)] is 
equivalent to the expression M [ N*(X + h) - N*0k)] 2~ ch. 

In other words we must "eliminate" the small constant 7 > 0 from the 
estimate (13). Unfortunately, c(7),__,~---~ ~ (see Ref. 3) and the above 



The Centrai Limit Theorem for the Spectrum 303 

given argumentations are not applicable in this situation. By the fact that 
the limit process is a Gaussian one, to prove Theorem 2 it is sufficient to 
show that 

and 

M IN (X + h) -N (X)I 2 =  (X)h + 3(h) (14) 

Mx(N~(A + h) - N~(X))(N~(A' + h) - N~(A')) = 3(h) (15) 

where the intervals (A, A + h) and (A', X' + h) do not intersect. We shall also 
establish that C(X)= n(A) is a state density of the operator H, i.e., n(~,) 
= aU(X)/aX. 

The proof of these facts is rather complicated technically. It is essen- 
tially based on the results of Ref. 3, Section 3, describing the moments of 
the flow of the level intersections by a non-Gaussian random process. The 
estimates of the transition density of the "almost degenerate" process 
(xt, Ox(t),Ox,(t)) with the "small" difference between X and A' is also an 
important factor in our proof. Therefore, we shall only outline the general 
scheme of the discussion and omit technical details. 

Let us write down MxNL(A ) and Mx(NL(A)Nr(A')) in another form. 
Moving the origin to ( - L ) ,  we can symbolically write down that 

NL(A) = NL(X + h) - SL(a)  

a0x(2L) 
= f J ; t .  8(0~(2L)) 2;t I = ~d;~. 6(Ox(2L)).Zx(2L ) 

in the notations of Refs. 3 and 2. 

Lemma 4. (a) For every A 

M(x,o)NL(~ ) = f dX. M(x.o,o)(Zx(2L))6(Ox(2L)) 

= f dX. M(x,O,O) fo2Lds 

X exp[- fZLsin2Ox(u)(l + F(x,) - X)du]sinZOx(s) 

2 L  •  ds(  px(s,(x,O),(x,,0i) ) 
J A  dO J S ~ x S  ~ 

• sin2Oipx(2L - s,(Sv, O),(Xl- O0)dxldO 1, (16) 

where px(., (S~, 0), (., ")) denotes an averaging of the density Px(', (x, 0), 
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(.,  .)) with respect to x, i.e., an integration with respect to the Euclidean 
measure on S ~. 

, 2L 2L , 
(/3) i~(UL(5))2=M*NL(a)+ f f dXdXi(~'~176 fo asds 

~ X  /'.' 

X exp - ~  sin2Ox,(u)(1 + F(x.) - X')du 
..,'s" 

X sin2Ox,(s')8(Ox(2L)) 8(Ox,(2L)) 

= MxN~(A)+ 2if  . x a x '  f f  d, ds' 
AxA' O < s < s ' < 2 L  

x f(s~ x S 1 X S l)p)k,x,(s , ( x ,  0, 0 ) ,  (x1 ,01 ,02) )M(x l ,O , ,o2)  

( It" 1 x sin201 x exp - sln20x(u)(1 + F(x.) - X)du + sin202 
'.,'S 

Xexp[-fsS'sin2Ox,(u)(l+ F(x.)-X')du]} 

Xp~y(2L - ~', (s~, o, o), (Xs,_,, - o~(,' - ~), 
-o~,(~'- ,)))d=,aO, dO~ (17) 

(y) If the intervals A and A' do not intersect then 

ixU~(")U~(A') = 2if  ~xax'  i f  e,d,' (18) 
AXA' O < s < s ' < 2 L  

and so on as in (17). 

Proof. These formulas follow from the general theory of Ref. 3, 
Section 3. Only one point needs additional argumentation. We shall illus- 
trate that for (/3). 

It is true, that 

M(x,o,,o2)exp[- fotSin20~(u)(1 + F(x . ) -  •)du 

- fotSin2Oa,(u)(1 + F(x . ) -  A')du 1 (19) 

•  ( s  ~, 0, 0), (x ,  - 0l ,  - o2))8(o~(t)). ~(o~. (t)) 
Indeed, (xt, Ox(t),Ox,(t)) is a diffusion process with the infinitesimal 

operator A 2 [see (7)]. According to the Kac-Feynman formula, the expecta- 
tion in (19) [let us denote it by U(t,x, Ot,O2) ] satisfies the parabolic 
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differential equation 

OU _ A2 U _  U[sin201 • (1 + F ( x ) -  X) + sin202(1 + F(x)  - ?~l)] 
0t 

1 [cos201 + = -~ A x U + (F(x)  - X)sin20, ] 

0U _ U[sin2Ol • (1 + r ( x ) -  X)] •  
+ [cosZ02 + ( r ( x )  - Xt)sin202] 8U _ U[sin202 • (1 + r ( x )  - X 1)] w~ 

= ~ A x U + _ ~  J 1  0 [U(cos201+(F(x)_X)sin201)]  

0 + ~ [ U(cos202 + (g ( x )  - 2t')sin202) ] 

with the initial condition U(O,x,01,02)= 8(01)6(02). Let us denote the 
fundamental solution of this parabolic equation by qx,~,( t, ( x, 01, 02), 
(2, t~l, t~2) ), then 

U(t, x, 01, Oz) = fs~• s'• s 'qx'x'(t' (x, 01,02), (s if1, ff2))6(01) dY dtf~ dff 2 

= q~,~ (t, (x, o,, 02), ( s  ~, 0, 0)) 

but the function qx,x' satisfies in arguments t, s 0~, t~ 2 the adjoint problem 
with the elliptic operator 

U _ [ cos20"2 + ( F ( i )  - X')sin202 ] ~ U 12 A; -- [ cos2t~, + (g(Y) - ~t)sinZffl ] ~ Off 2 

on the right. Clearly, the last expression is the infinitesimal operator of the 
process (xt, - Oa( t ), - 0x,(t)), hence 

q~,~,(t, (x, 0,, 0~), ( s  ~, o, o)) = p~,~,(t, ( s  ~, o, o), (x, - 01, - 02)) 

This fact proves both formula (19) and Lemma 4. 
In the future we shall need the expectation of the form 

U(t,x,  Ol,O2) = M(x,O,,o2)(exp[-fotSin202(u)(l+ F ( x u ) - ) t ) d u ]  

• h(x,, o~(0, o~,(t))) 

Evidently, this function satisfies the parabolic equation 

OU _ 1 A U +  0 
o,  2 ~ ~ ,_ u ,  c~176 + ( F(x)  - X)sin201) ] 

+ [COS202 -4- (F(x)  - A')sin202] ~2'0 U U(0, x, 01,02) = h(x, 01,02) (20) 
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If h ~ 1, then 

U(t,x, Ol,02)= M(x,O,.o2)exp[-fotsin2Ox(U)(l + F(x.)-X)du] 

= px(t, (S ~, S ), (x, - 0,))t--> ~rx(x, - 0,) (21) 

with the exponential speed. Now we denote the fundamental solution of 
(20) by/~(x,x2,(t, (x, 01 , 02), (2, gl, 02)) and the corresponding semigroup of the 
operators on C(S'X $1• S 1) by fit. Since this semigroup is evidently 
positive we have that the "largest" eigenvalue of the infinitesimal operator 
of the semigroup equals zero [by the Frobenius theorem together with (21)]. 
We obtain also that ~rx(x,- 01) is the eigenfunction corresponding to the 
"largest" eigenvalue, 7rx,(x, 02) is the "largest" eigenfunction of the adjoint 
problem, and 

f i(X,)x,(t ,(x,O,,O2),(X, O l , g 2 ) ) t - - ) ' l r x ( X , -  01) 7/ h,(2~, g2) (22) 

with the exponential speed. 
We can represent Mx(NL(A)) 2 in terms of the fundamental solutions 

described above. Thus we have 

A 2 f' ," 2 L Mx(NL( ))----)Ad)tJo d= f px(s,(x,O),(x I 01))sin20, 
S~•  t 

xp (2L - s, (S 0), (x , ,  - 01)) dxl dO, 

+2ff dxdX' f f  dsd,' 
AxA' O<s<s '<2L 

• f f  px ,x , ( s , (x ,O,O) , (x , ,Ol ,02))  
( S v x S I x s ' I )  2 

• [ sine0 lsin2/~2fi(xx),(s' - -  s ,  (X l ,  01 ,02)  , 

x (e ,  gl, 02)) + s in202sin~igX!(s  ' - s, ( x l ,  0~, 02), 

x(Y,t~,,O2))]Px,x,(2L- s',(S~,O,O),( 2, -if1,-Oz)) 

• dx I dO 1 dO2dYdO l dO 2 (23) 

The first term of (23) is equivalent to 

2LfAdXfs.xs~ra(x,,Ol)sin20,~rx(xl,-O,)dx, dO~ = 2L~n(X)dX 

for the large L and n(X) is the state density of the initial operator H, 
n(X) > 0 for all h > 0. 

We may add the limits of the fundamental solutions ex.x"~(x) and/~(x,x~) to 
the expression in square brackets under the second integral and t h e n  
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subtract these limits, as is usually done when counting the variance of the 
additive functional from the Markov process. In the end we obtain two 
integrals: 

1,=2f f dxdX' f f f f 
A• ( S ~ •  2 O < s < s ' < 2 L  

• [ sin20~ • %(xl ,  - 00%,  (~, 02) + sin202 • %(~, - 02)%'(x~, 05) ] 

Xpx,x,(2L - s', (S~,0,0), ( s  dO, dOed.~dff, dff 2 

I2= 2 f f d X d X " ' '  [sin2Ol(p[)2, - ~x~rx,) 
AxA' 
+ sin 02(p   ! - ] . . -  

It is easy to see that I 1 = M2NL(A) + O(e-SL)~4L2fAxa, fn(~)n  
�9 (~')d~d~'. This equality is a consequence of both the properties of the 
invariant measure and of that fact, that the arguments under integral are as 
a matter of fact separable. 

As for integral 12, it has the order L. The standard argumentations 
show that 

12 d)t d)~'~ ~ dr lira -5-s = 2 f f f f =~,x,(x,,o,,o2) 
AxA' ( S ~ x  S l x S I )  2 

• [sin20,(~(xx)x,(r,(x,,O,,Oz),(s %(x,,- 00%,(Y,02) ) 

+ sin202(fi~,~!(r, (x,, 01,02) , ( 9~, 01, g2)) -- 7/'),( )~, -- 4)7/'),'( X,, 01) ) ] 

X " / 7 ~ , ~ , ( X , - - O l ' - 4 ) d x ,  dO, dO2dYdgldg2 

This limit transition is trivial for )~,)d such that ]~.' - )q > e. For )V close to 
)t it is necessary to apply the estimates of this density established in Ref. 3 
because of the degeneration of the transition density Pax- 

Thus we have definitely proved that 

lim D x ( N L ( A )  )2 
L--) oo ~ (2L)1/2 =s 

AX&' 

where K0t, X' ) is some integrable continuous for X = )d function. If 

A = [~,~ + h], then fan(h)d;~ = Ihln()t)+ o(h) and f~• 
= o ( h ) ,  i . e . ,  

M(N*O~ + h) - N*(X)) 2= n()~)h + o(h) 
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As far  as a c o v a r i a n c e  is c o n c e r n e d ,  t h e n  

lim C o V ( N L ( A ) ' N L ( A ' ) )  = f f~• ~ C~ ~' = O, 
L~o~ 2 L  

whence M ( N * ( X  + h) - N*(h))(N*(~ '  + h) - N*(~'))  = o(h). T h e o r e m  2 is 
proved.  �9 
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