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Let H, = —d?*/di* + q(1,v) be an one-dimensional random Schrédinger opera-
tor in £%(— L, L) with the classical boundary conditions. The random potential
g(f,w) has a form ¢(t,w)= F(x,), where x, is a Brownian motion on the
Euclidean r-dimensional torus, F: S”— R! is a smooth function with the
nondegenerated critical points, ming.F = 0. Let N;(\) = 3, ( < l(L, ) are
the eigenvalues of H;) be a spectral distribution function in the “volume”
[-L,L]and NQA) = lim; ,(1/2L)N, (\) be a corresponding limit distribution
function.

Theorem 1. If L—>co then the normalized difference N}(\) =[N, (A) —
2L-NNY/ V2L tends (in the sense of Levi-Prokhorov) to the limit Gaussian
process N*(A); N*(A)=0, A <0, and N*(QA) has nondegenerated finite-
dimensional distributions on the spectrum (i.e., A > 0).

Theorem 2. The limit process N*(A) is a continuous process with the locally
independent increments.

KEY WORDS: Random Schrodinger operator; spectrum; limit distribution
function; central limit theorem; state density.

INTRODUCTION

In this paper we investigate the random one-dimensional Schrodinger
operator
__d 1
H=--"—>+q(tw), tER,0EN (1)
dt

where (£, ¥, P) is the probability space and ¢(¢,w) is a stationary (in the
narrow sense) random process. One of the basic objects of interest from the
point of view of physics and connected with this operator is the limit
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distribution function
N.(N)
3 (2)

where N; (A) = 3, 1y <als A(L, w) are the eigenvalues of the restriction H,
of the operator H to the Hilbert space £4— L,L] with some classical
boundary conditions, for example, Dirichlet conditions

y(=Ly=y(L)=0. 3)
L. A. Pastur (see Ref. 1) has proved the existence of the nonrandom limit
N() almost surely. He supposed that the potential ¢(¢, w) must be metri-
cally transitive and must almost surely have a lower boundary. L. A. Pastur
used substantially the Schturm oscillation theorem and Birghof-Khintchin
ergodic theorem.

The formula (2) may be considered a certain law of large numbers for
the sequence of spectra of the operator H,. The natural (and interesting
from the point of view of physics) question is one about the estimate of the
remainder term in (2). We shall study this problem for the special class of
Markov-type potentials g(#, w) which were introduced in Ref. 2 and studied
in Ref. 3 at great length. (To be precise, we consider a somewhat narrower
class of potentials.)

1. In our work the following two results will be established which
characterize the Gaussian fluctuation N, (A) for this special class of the
random Schrédinger operators.

N\ = lim

Lo

Theorem 1. For every compact interval A € R, the distributions of
the normalized differences

NL(}\) - MNL(}\)

AEA
(ZL)I/Z

NER) =

weak-converge in C(A) to the distribution of the continuous Gaussian
process N*(A). The limit process N*(A) has the following properties: N*(\)
=0 for A < 0 and the finite-dimensional distributions of N*(\) are nonde-
generate if A > 0. The correlation function of the process N*(A) is defined
by the formula (11) (see Lemma 3).

Remark 1. Since the process NF(A) is discontinuous the term weak
convergence wants some specification. As usual we mean the following: the
normalized differences NF(A), A € A, can be represented in the form N}(A)
= N}(\) + ¢, (\), where ¢,(\)—>0 uniformly in [0, + c0) (actually |¢, (N)]
< C|YL), the processes ]\7{(}\) are continuous and their distributions con-
verge to the distributions of the limit Gaussian process (in Levi-Prokhorov
metric on C(A)).
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Theorem 2. The limit process N*(A), A > 0, has the local Markov
property. Moreover, N*(A) has the locally independent increments. The last
means that for every fixed A > 0, n > 0 the random values

N*(A+ 1+ 14)— N*A+ 1)
[D[N*(A\ + 1, + 1) — N*A + tl)]}'/2 ’

N*A+t+ -+, )N A+H+ - +1)
(D[N*A+1,+ -+ +1,,) = N*A+ 1, + - + )]}

(t>0,i=2,...,n, max,|t| =0, the sign of 7, is of no importance) are
asymptotically independent.

Theorem 2 agrees well with one of the results of Ref. 4 concerning the
local Poisson structure of the spectrum of H in £%(— L, L), whenever
L— 0.

2. Let K= S’ be the Euclidean »-dimensional torus and let x;, i
=1, ..., », be the natural coordinates on S*, 0 < x; < 7. The points 0,7
are identified, x,, t € R, is a Brownian motion on S* having the stationary
(uniform on S*) one-dimensional distribution; F:§”— R' is a smooth
“nonflat” function (the last means that for every x, € §” there exists a
number n = n(x,) such that d"F(x,) # 0). Clearly, the process

q(t,w) = F(x)
is the stationary one with the uniformly strong mixing conditions
(coefficient of mixing decreases exponentially). Let us also suppose that
min, . ¢.F(x)=0. It is proved in Ref. 2 that under this condition the
spectrum of H in £%(R') coincides with the half-axis § = [0, oo). The inner
part of the spectrum we shall denote by S, that is, $= (0, c0).

We introduce a phase #,(s) of the equation Hy = Ay as usual by the
formula

8,(s) = arccot % . O(5eSs! (4)
As is well known (see Ref. 1),
do, .
- = cos’,(s) +[ A — F(x,)]sin’,(s) (5)

and (by the Schturm theorem)
1 rL .
N, (A) = - f_L{coszﬂ,\(s) + [N = F(x,)]sinfy(s)} ds

FR(L)O(-1)=T (6)
where |[R(L)| < 1.
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Thus we have reduced the analysis of the behavior of N,(A) at the
infinity to the analysis of the additive functional from the process {(x,, #,(1)).
In the future we shall also use the properties of the more general process

X, ()= (%00 (1)s - - O (D) A < - -+ <A,

It is easy to see that the process X, (¢) is the Markov diffusion process (on
the compact K, = S” X (S')") having the infinitesimal operator

1 n . 9 3
Ay =58+ 3 [costh + (\ = F(x))sin®, ] 55 @

and the natural periodic boundary conditions. This operator is degenerate
(elliptic—parabolical), hence the problem of the existence and smoothness
of transition densities p(¢,(x,8,,...,48,),(x".8{,...,0,) with respect to
the Euclidean measure on $* X (S')" is nontrivial. We shall rely here on
the general theory based on Hormander’s ideas of Ref. 5. This theory was
first used in a similar situation in Ref. 2.

The following two lemmas generalize the results of Refs. 2 and 3,
where they were proved for n = 1 and formulated for n = 2.

Lemma 1. If A, < .- <A, then for > 0 there exists the smooth

(in all arguments) transition density p(z,(x,8,, ..., 8,),(x",0;,...,8,) of
the process X, (7). This density is the fundamental solution of the equation
p _
E =A4,p

in the cylinder (0, 50) X (S§* X (S)").

Lemma 2. If 0<A, <A, <--- <A, (ies NES, i=1,...,n)
then for ¢ >ty = t((A, ..., A)
PG s Y (rtseens ) >0
Lemma 1 enables us to see that the multidimensional process (x,,
0,,(8); . . ., 0, (¥)) satisfies the Doéblin condition for all A, < -+ <A,.

Accprding to Lemma 2 this process is uniformly ergodic and connected
on .

Proof of Lemma 1. Let us introduce the vector fields on §* X (S')":

X,-=§a;, i=1,...,»
_ : 2 _ ) d
Y—Z:I [cos 9, + (A, — F(x))sin Hi] 3,

By the general theory of Ref. 5, in order to prove Lemma 1 it is
sufficient to show that the Lie algebra % of vector fields which is general-
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ized by the fields X;, i = 1, .. ., » and all possible commutators of the form
[...[X; . . [X,,Y]...Y...] (the field Y itself is not included in the
number of generators) has the maximum dimension n + » at the every
point of the manifold S§* X (S")". Let us stress that this algebra is con-
structed over the ring of the infinitely differentiable functions.

Now we fix a point (x,,0% € §* X (S')" and consider the commuta-

tors of the form [Y,X,,...,X,]=2Z " . The simple computations
show that
BkF(x)
(0 o k______ a0
Z’I ----- /3 ( l) ax' ax ESIH 01 aa

i) i i=1
Because of the “nonflatness™ of F(x) there exists a number k = k(x,) such
that
akF(x)
0x; ...dx;

1
* lx=xg

#0

Since the last derivative is not equal to zero in some neighborhood of
(x0,8°), the field 37_ ;sin’.(d /96,) belongs to U (in the fixed neighborhood
of the point (x,,#°%j; all the following discussions will be held in this
neighborhood).

=2 .. One can see

,,,,, [FTR

that Z® = 37_sin26,(3/36,) € U. Subtractmg the field € - Z(" (C
is a suitable coefflclent) from the field Z»  =[Y,Z? .]=
"_,2[sin’d,(\, — F — 1) — (1 — sin’,)[(3 /36, we have Z®'= S
oy sm20 - 1)(8/80) € U. After commutating [Z¥, Y] we note that Z“’
—2,=1}\2sm20 (3/06) € ¥A. By induction it is easy to show that for
k>2 ZOk+D = Aksin26,0/88,) €A and Z kD =3 .
Afsin®, — A "'+ P\, F)|(3/06,) where P(A,F) is the mult1n0m1a1 of

(k — 2)th degree. Let us suppose now that 8=, ...,0% (S’
is such that sin26 0, ..., sin20? 0. Then (using a property of the
Wandermond determmant) we find that the fields X,,..., X,, VACH
Z® . ..,Z3 form a basis of the maximum dlmensmn at (xq,0 )
S S” X (S Wy 1f for some / sin 260 = 0, then we can construct the desirable
basis using the fields Z**"Y, k=1,..., n. Lemma I is proved. W
Proof of Lemma 2. One can find such g4, . . ., g, € R, that
(a) 0<a, < - <a, )??;asva(x)

(b) ay, . a4, <Ay
(©) By=A— “j)l/z

are rationally independent for all i, j=1,..., n.
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Evidently, this may be achieved by various methods.

The system

%,

a7 =M —a)y

d

_2)}’1 =\, — @)Yt E(t_ ) ty=0,=Ti=1,...,n,

ar
with the piecewise constant coefficients has an exact solution. We denote
the set of phases of these equations at the point T by (8(T), ..., 8,(T).
We consider the mapping (¢, ..., ¢4,_ . T)=>0G, ..., T) ...,
8.t ...,1,_,.T)). Both the Weil theorem about the irrational winding of
the torus and the rational independence of 8; = (A, — aj)l/ i j=1,...,n,

yield that the image of the symplex 0 <, <, < -+ <¢t,_<t,=T)
for sufficiently large T coincides with the torus (S')" by such mapping.
From this simple fact it follows immediately that for every initial point
(%087, ..., 8% distribution of the process X, () = (x, 0, (D), ..., 8, (1)
at the moment ¢ = T is dense on S* X (§')". In fact, let us consider some
point (x,,8),...,8H) € S” X (S"" and some neighborhood V 3 (x,,
gl,...,8". We choose A4,,...,A4,€ S” such that F(4,) = a,i
=1,...,n, and analyze the following “behavior” of the process x, € §*
for some sufficiently small numbers &,, ..., 8,,¢€, ..., ¢€,,,. During the
time 8§, the process x, moves from x, to the ¢; neighborhood of 4, and
remains there from the moment §,, till the moment ¢,, then during the time
which does not exceed §, it moves from the €, neighborhood of 4, to the ¢,
neighborhood of 4,. It remains there till the moment 7,, ..., at the last
but one step [in the interval (z,_,,¢,_, + 6,_,)] it moves to the ¢, neighbor-
hood of A4,, where it stays till the moment 7, — §,, and lastly during the
time from ¢, — 6, till z, = T it goes to the ¢, neighborhood of the point
A, where it stays till the moment 7, = T.

Clearly, this motion has a positive probability. We are left to choose
8y, .- -»0,,€,...,¢6,,, sufficiently small and using the above given re-
mark to fix the desirable #,, ..., #,_,. Now by the continuous dependence
of the solution of the differential equation on the parameters we have that

P(T,(xo,ﬂlo,... 6’0),V(xl,011,...,9,,l))>0 (*)

We shall show that
PRT(ors s ) (s 1)) >0 (x+)

Indeed, let us suppose that it is not true. Then there are points
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(x0,8, ..., 8% and (x,,8/, ..., 8] such that
P2T, (%060 - - 0°). (1,80, ... 6)))
=fp(T,(x0,010, B0 (500 6,))
Xp(T,(x.8y, -, 8,) (x1,8), ..., 8,))

Xdxdf, ...dj,=0

This yields immediately that p(7,(x,8,, ..., 8,),(x,,8},...,8/»=0
(as the function from the arguments (x,6,, ..., #,)). Applying the Kol-
mogorov—Chapman equation once more we see that

P(T+m(x00, ..., 0,)(x,00,....8,))
=fp(¢,(x,01,...,0n),(5e,0"1,...,9""))

xP(T,(;e,a"],...,aj,),(xl,o,*,...,an'))

Xdidf,...df,=0
But the last equality can be written down as

OEfp(T,(x,al,...,on),(f,é],...,@))
X p(r. (%00, .0, (x1,8), ..., 8, ))d5dd, ... d,

This means that p(r,(%,4,,...,8,),(x,,8!,...,8)=0. But from the

definition of the fundamental solution of a differential equation it follows
that

p(r(& 0, ) (%18, 6, ).,
>8(%0), ..., 0,).(x0{,....0)).
We came to a contradiction which proves Lemma 2. B
Corollary 1. If 0 <A, < -+ <A, then
p(t(xb ..., 8,) (x,0/,...,86, ))t_m—é'er ,,,,, a(x0l ... 8))

with the exponential speed. The limit invariant density is the unique
positive solution (within normalization) of the equation Ay A =0

,,,,,

Remark 2. One can show, that for any A; < - - - <A, the process
(%0, (D), . - ., 8, (1)) has the unique ergodic class so that

P(ty('y Ty vy ')7(x3019 cev 0,,))[_)00_)‘77)\‘ .... )\n(x,ﬂl, ey gn)
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(with the exponential speed). But (see Ref. 2) if at least one of A, <0,
i=1,2,...,n, this class is a proper subset of the compact S” X ()"

3. The following important limit theorem belongs essentially to S. V.
Nagajev (see Ref. 6). Our formulation differs from the Nagajev’s theorem
in some technical details.

Lemma 3. Let K be a compact, p, a dense measure on the Borell ¢
algebra B(K), and let x,,r > 0, be the Markov homogeneous process
having a continuous transition density p(z, x, y) relative to p. If there is ¢,
such that p(zy,x, y) > 0, then

(@) p(t,x, ¥),0 > 7(y) (it converges with the exponential speed in the
metric of C(K)).

(b) If the function f=(f;,...,f,): K= R' is measurable and
[IfIPdp < o, then

(b)) M, ['f(x)ds= 1] f(x)m(x)dp(x) + O(1)
(by) cov[Ltﬁ(xs)ds,J;tﬁ(xs) ds} = tB; + O(1)

(uniformly in x € K).
(c) If det{B;} > 0, then the distribution of the normalized vector

o) ds — tfdy m()dp }
- Q=

weak-converge to the nondegenerate Gaussian n-dimensional distribution
with the mean equaling to 0 and covariance matrix B = (B;), ;-1 . ,-
(d) If det B = 0, then there exist the constants ¢, . . ., ¢, such that

D[éc,.f()’ﬁ(xs)ds] = 0(1)

[Ei(t) =

when ¢t — o0.

To use Lemma 3 while examining the process Nf(A)= [N, (A)
— MN,(MN)]/(2L)"/? we must effectively compute the second moments of
the functionals

[ [cos™y(5) + (8 = F(x))sin, (5) | ds= gy (1

One can see that

M, 511? f_LL[coszﬂ,\(s) + (A = F(x,))sinfy(s)] ds

Sﬂxsl[cos@ + (N~ F(x))sin®d | my(x, 0 ) dx db (8)
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We denote cos® + A - F(x))sin®g by fi(x,8) and fi(x,0) — [gx51fi(x,0)
w}\(x 8)dxdf by fy(x,8). Clearly, [fym,dxdf =0, hence there exists the
unique solution of the equation

Ayuy(x,0) = ——Au)\(x )+ fi(x 0)—l—) = fi(x.9) 9)

Applying the Ito formula, it is easy to obtain that
ur(X,, 0x(2)) — ur(%o; Hf)
- f ‘grad, u,(x,, 0,(s)) dw, + f "Aniny(x,,05(s)) ds
0 0

=j(;gradxu,\(xs,0)\(s)) dw, +f0 f(xs,ﬂx(s)) ds (10)

where w_ is the p-dimensional Wiener process on the torus S*. We may also
hold that w, is a Wiener process on R”, since the function u,(x,8) can be
considered as a periodic function on R” X R' in each argument (with the
period 7).

From the formulas (8) and (10) it immediately follows that for u, A, u
FA,

R(pX)= lim ——cov[ f Fu(%503(s)) s, f f(% Oy(s))ds}

= lim ———cov(f grad u, dw, f grad, u dw)

L—>oo

L 1 L
= lim 2—L—M ﬁ L(gradxu)\, grad, u, ) ds

Lo
= d ,0,), grad, u, (x,8
S”xS‘xS‘(gra Lur(x,0,), grad u, (x,8,))
X 7 (%8, 8, ) dx db, db, (11)

To obtain this result we have used Corollary 1.

The formula (11) gives us the correlation function of the process N*(A).
But neither the existence of this process nor a kind of the convergence to it
have not yet been established.

4. Let us pass on directly to proving Theorem 1. Since for A <0
N, (A) =0, then (without losing generality) it is sufficient to carry out all the
discussions for the interval A of the axis [0, o0).

The functions wu,(x,#) are continuous in (x,#,A), hence they are
bounded. The transition density p,(¢,(x,8),(x,,#,)) converges to the invari-
ant density ,(x,8) uniformly in A € A (except a neighborhood of A =0,
but p,(¢,(x,8),(x,,8,)) is uniformly bounded, therefore the Déeblin condi-
tion holds uniformly in A).
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From these facts it follows that
N (A) = MN, (N)
2 L)’ 72

NE(N) =

R\ L)
Ly’

=[ %I_LL(gradu,\(xs,O)\(s)), de)J/(ZL)]/2+

where R((A, L) is uniformly bounded in A € A as L - oo. This means that to
prove the weak convergence of the distributions of N}(\) in sup metric, we
must show the weak convergence for the sequence of the continuous
processes (and martingals at that)

~ _ 1 L
NEN = oo [ (eradun(x, 03()).am) (12)

According to the general Prokhorov’s theorem (see Ref. 7) to finish the
proof of Theorem 1 we are left to establish two conditions: (a) the
convergence of the finite-dimensional distributions of the processes N}(A), A
€A, to the Gaussian limit distributions, and (b) a compactness of the
distributions of the processes N} (A) in C(A).

Lemma 3 yields the weak convergence of the finite-dimensional distri-
butions of N}(A),A € A to the corresponding finite-dimensional distribu-
tions of the Gaussian process N*(A) with the null mean and correlation
function R(A, p) [see formula (11)].

We verify the fact that these finite-dimensional distributions are non-
degenerate. To achieve this we use Lemma 3, Part (c).

Let 0<A, < -+ <A, We consider the function f=7_cf, (x.6,)
and the corresponding additive functional

B(L)= [ 3 G (o B0 (5)) s

Repeating the discussion given in Section 3 we se¢ that

Dg(L) 2
= 00, ...,8
L—>o 2L S"X(Sl)" I.adxukl """" An('x 1 n)
Th, ..., A dx df, da,
where @, , (x,0,, ..., 8,) is the solution of the equation
n -
A>‘1 ----- )\na = lc,'f)\,-(x’oi)
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Plainly,

Since

.....

’;M _____ >\n()c,Hl, o8y = -21 iy (%, 0;)

An(x,ﬁl, ..., 8) >0, therefore

n

c.grad_u, (x,0.)=0
i x A,( 1)

i=1

whenever lim; , [D¢(L)/2L] =0.
From this fact it follows that

gradxuk_(x, 0) = g(x)

where g;,i =1, ..., n, are some vector functions and

uy(x,0) = Gy(x) + hy(8)

which leads to a contradiction with the equation

1 duy,
-2— AUA +f,\(x,0) —8‘0— =f>\(x,0)

301

Now let us check an equicontinuity of the family of the processes N FA),

which provides us with the desirable compactness. By the well-known

version of the Kolmogorov theorem about the continuity of the random

processes it is sufficient to establish that Mx|]\7’L"()\ + h) = N¥(V|* < const

-h'** a > 0 (const and « are independent of L).
The inequality

MUOTf(t)aVW(t)p< BPM(foTlﬂ(t)Pdt)P/z

(see Ref. &, p. 432) shows that one must prove the following formula (as in
case of the Gaussian processes):

But

M N} (A+ h)— Nf () < const- k%, B >0

M INF(\+ k) = NtV

L
- ilf M {f_L[gradquh(xs, 0x11(5)) — grad, u(x,, 5(5)), @w; | }
1 L s
E—lj f_ LMxlgradxu)\ +h(x5’ 0}\+h(s)) — gradxll}\(x:, 0)\(5‘))' ds
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We estimate the difference between gradients under the interval. From
Hoérmander’s theory we obtain that the function u,(x,#) is infinitely
differentiable in all three arguments: A € A, (x,8) € S* x S'. Hence,

|grad, uy . (X, Or14(5)) — grad,uy(x,, O5(s))|
< |grad, uy 4 (%, 05(5)) — grad  u(x,, 05(5))|
lgrad ity (%, By 14(5)) = 2radthy (0 B3(5))]
< Gl + Cylby 1 4(s) — Ox(5)|
< Gl + Clbyia(s) = (I §>v>0

where the constants C, C,, C; are independent of L. So,
1 L
5T [_ LMxlgradquh(xs,HH,,(S)) — gradxu)\(xs,g}\(s))iz ds
< —LfL M [2C2|h|2 + 2C0y 1(5) — Bi(s ll—lv]ds
Sar ) et 3105+ 4(5) — 6x(5)

L —
<GP+ Cogip (7 Mlbhan(s) = ()] 7.

We may now use the important estimate (see Ref. 3), Corollary 2'):

Oy n(8) =~ 0x(s) |'
Mx[ — =g Gn(—L)=6(-L)| < C(v)
and thus finally obtain that
MNF\+ by~ Nf (NP < Co(v) || (13)

Theorem 1 is proved.

Remark 3. The transition from |8, ,(s) — 8,(s)| to |8, . ,(s5) —
8,(s)|'/?~* was necessary because of the fact that

0)\_,,,,(5') - 0)\(5')
* 2h e

(see Ref. 3).

Remark 4. The inequality (13) means the continuity of the limit
process N*(A\) and proves that this process satisfies the Holder condition
with the index 1/2 — y for any v > 0. As we shall see a bit later, Theorem 2
[about the local independence of the increments of the process N*(A)] is
equivalent to the expression M|N*(\ + h) — N*(\)|*~ch.

In other words we must “eliminate” the small constant y > 0 from the
estimate (13). Unfortunately, c¢(y),..,,— o (see Ref. 3) and the above
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given argumentations are not applicable in this situation. By the fact that
the limit process is a Gaussian one, to prove Theorem 2 it is sufficient to
show that

M NF(A+ h) = NV = c(M)h + o(h) (14)
and
M (N} A+ by = NEQO)NEQ + by = NEQV) = B(h) (19

where the intervals (A, A + /) and (A’, A" + A) do not intersect. We shall also
establish that C(A) = n(A) is a state density of the operator H, i.e., n(\)
=JdN()/3A.

The proof of these facts is rather complicated technically. It is essen-
tially based on the results of Ref. 3, Section 3, describing the moments of
the flow of the level intersections by a non-Gaussian random process. The
estimates of the transition density of the “almost degenerate” process
(x,,0,(1),8,(2)) with the “small” difference between A and A’ is also an
important factor in our proof. Therefore, we shall only outline the general
scheme of the discussion and omit technical details.

Let us write down M, N, (A) and M_(N,(A)N,(4")) in another form.
Moving the origin to {(— L), we can symbolically write down that

N (A)y= N (A+h)= N, (A)

86,2L
= [ax-8(2L)) ——2(7—)1= far-a(8,0L)- z,21)

in the notations of Refs. 3 and 2.

Lemma 4. (a) For every A

M. oNL(A) = fA AN M, 00(Zy2L))8(05(2L))

2L
= f AN M, g0, f ds
A 0

X exp[ - f *in 26,(u)(1 + F(x,) — A) du}sinzﬂ}\(s)

X 8(8,(2L)) =Ld}\j(;2LdsfS"xslp>\(s,(x,O),(xl,HI))
X sin’; py(2L — 5,(S",0), (x, — 8,)) dx, db,, (16)

where p,(-,(S”,0),(-, -)) denotes an averaging of the density p,(-,(x,0),
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(-, +)) with respect to x, ie., an integration with respect to the Euclidean
measure on S”.

2L 2L
M (N, (A= M_N,(A)+ | | dN\dN'M dsds’
(B) M (N, (&)Y=MN,®)+ | oo [ |
AXA
2L, 2
X exp f sin260,(u)(1 + F(x,) — A)du |sin,(s)

X exp{ —IIZLsin 20\ (u)(1 + F(x,) —\') du]
X sinf)(s')8(6,(2L)) 8 (6 (2L))

=MXNL(A)+2ffd>\dN ff ds ds’

AXA 0<s<s'<2L
X [(87% 81 % 8 Yprn(s, (x,0,0), (x1,01,02)) M0,

X {sinzﬁl X exp[ —fysin 20\(w)(1 + F(x,) — N du + sinzﬂz}
s

X exp[ — fs/sin20,\,(u)(1 4 F(xu) . }\/) du:l}
XPA’X(ZL - S” (Sv’ 07 0)’ (xs'~s’ - 0}\(3/ - S)’
—0,(s' — 5)))dx, d8, db, (17)
(y) If the intervals A and A’ do not intersect then
M, N (AN (&) = 2ff drdx ff ds ds’ (18)

. AxA O<s< s <2L
and so on as in (17).

Proof. These formulas follow from the general theory of Ref. 3,
Section 3. Only one point needs additional argumentation. We shall illus-
trate that for ( 3).

It is true, that

‘.
M 0.0, exp{ *fo sin 26, (u)(1 + F(x,) — A)du

~ [(sin20,(u)(1 + F(x,) - )\’)dul

X (1, (87,0,0), (x, = 8, — 8,))8(8,(2)) - (b (1))
Indeed, (x,,8,(2),8,() is a diffusion process with the infinitesimal

operator A4, [see (7)]. According to the Kac-Feynman formula, the expecta-
tion in (19) [let us denote it by U(s, x,8,,0,)] satisfies the parabolic

(19)
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differential equation

8U — 4,0~ U[sin20, X (14 F(x) = A) +sin26,(1 + F(x) = A"

= 38, U+[cos™, + (F(x) = \)sin', ]
X

L

U _ ylsin26, x (1 + F(x) = N)]

38,
[05292 (F(x)-}\‘)sinzl)z]gg U[sm26?2 (1+F(x)—>\‘)]
A,

% U+ 8%1 [U(coszﬂ1 + (F(x) — }\)sinZHI)}
0

+ 30 [ U(cos, + (F(x) — )\')sin202)]

with the initial condition U(0,x,#8,,8,) = 6(8,)6(8,). Let us denote the
fundamental solution of this parabolic equation by g,,(7,(x,8,.6,),
(%,6,,0,)), then

U(t’x’gl’az) =fv><$’><s|

= q/\)\'(t’ (’x’ 01 ’ 02)7 (SV, Os 0))

but the function g, - satisfies in arguments ¢, X, 8,.6, the adjoint problem
with the elliptic operator

1 25 = .25 0U q o Nein2g 1 08U
=A; —[cosd, + (F(%) — N)sin¥, | 2% ~[cos™d, + (F(X) — N)sin®d, | ==
3 ¢ = [e0s) + (F(%) = Nsin®,] 12 ~[costy + (F() = Nsin'] 5

Gt (x,0,,8,), (%.0,,0,))8(8,) dZ db, 46,

on the right. Clearly, the last expression is the infinitesimal operator of the
process (x,, — 8,(£), — 8,(?)), hence

Galt (81, 85), (57,0,0)) = pur(1,(5%,0,0), (x, — 8, — 6,))

This fact proves both formula (19) and Lemma 4.
In the future we shall need the expectation of the form

U(t,x,0,,8,) = M(X’ybyz){exp[ - fotsin 20 (w)(1 + F(x,) — )\) du

X h(x,03(1), BX(I))}
Evident]y, this function satisfies the parabolic equation

W_lav+ ‘a%“ [ U(cos, + (F(x) — Nsin'4))]

+[cosd, + (F(x) — A')sind, ] U(0,x,0,,0,) = h(x,6,,6,) (20)

a8,
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If h=1, then
U(t,%,0,,0,) = M(mgz)exp[ ~ [[sin28,(U)(1 + F(x,) = A)du
0

=P5(878) (%, —81)) 2, m(x — b)) 21

with the exponential speed. Now we denote the fundamental solution of
(20) by F(t.(x,8,,8,),(%,8,,8,)) and the corresponding semigroup of the
operators on C(S” X S'x S') by P,. Since this semigroup is evidently
positive we have that the “largest” eigenvalue of the infinitesimal operator
of the semigroup equals zero [by the Frobenius theorem together with (21)].
We obtain also that «,(x, —8)) is the eigenfunction corresponding to the
“largest” eigenvalue, m,.(x,#8,) is the “largest” eigenfunction of the adjoint
problem, and

PR (%,01,62), (£,0,,0)) = my(x, =07 (%, 0)) (22)

with the exponential speed.
We can represent M, (N, (A))* in terms of the fundamental solutions
described above. Thus we have

2L .
MX(N,_(A))z.—_fAd)\fO ds f (s (x,0), (x,,8)))sin’d,
N

X pr(2L — 5,(57,0), (x1, —8)) dx, d),

+2ffd>\d>\’ ff ds ds’

AXA O<s<s'<2L
X[ e 00)(x0000)
(8" S1x 8y

X [sinZOISinzﬁzﬁg‘,}(s’ —5,(x1,8,,0,),
X (%,0,,8,)) + sin®,sin®, FN(s" — 5, (1,601, 6,),
X (%, 51,52))] (2L — 5',(5%,0,0),(%, =8, —8,))
X dx,df, db,ds df, df, (23)
The first term of (23) is equivalent to
2LLdAprS1wA(x,,Ol)sinzﬂlw,‘(x,, —0,)dx, df, = 2LfAn(}\)d}\

for the large L and n(A\) is the state density of the initial operator H,
n(A) > 0 for all A > 0.

We may add the limits of the fundamental solutions (). and f{}\) to
the expression in square brackets under the second integral and then.
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subtract these limits, as is usually done when counting the variance of the
additive functional from the Markov process. In the end we obtain two
integrals:

11=2f f aav [ f ds ds’ f f Par(s, (%,0,0), (x,,8,,6,))

AXA (S7x 81x§hH? 0<s<s <2L
X [sin’f, X my(x,, —0,)7\(%, 672) + sin’f, X my(%, —0)m(x,,0,)]
Xpan(2L — ',(5”,0,0), (%, —6,, - 8,)) dx, db, db, d% df, db,

I,=2} | d\dX - - Sinzﬂl(ﬁ)(\)\), — m\Ty)
/]
+ sinzﬂz(ﬁ,{,’}:? - 7T>\7T)\/)] cee

It is easy to see that I, = M*N,(A)+ O(e %“)~d4L?[, n[n(N)n
-(A)YdAdXN. This equality is a consequence of both the properties of the
invariant measure and of that fact, that the arguments under integral are as
a matter of fact separable.
As for integral I,, it has the order L. The standard argumentations
show that

ngr;o—~—2ff dAdA’f dr ff Ty X1,61,65)

AXA (S*x8x sy
x [sin"-e,( (T (31,601,602, (£,6,,6)) — my(x,, — 8)m(%.6))
+ sin’fy( (M(T (%1,0,,6,),(£,0,,8,)) — m\(%, — a'z)wx(x,,ol))}
Xy (%, — 8y, — 02) dx,dd, d8,dx df, df,
This limit transition is trivial for A, A’ such that |\’ — A| > €. For X’ close to
A it is necessary to apply the estimates of this density established in Ref. 3

because of the degeneration of the transition density p, ..
Thus we have definitely proved that

. N (4) 2_ , ,
LIEI;DX(W) _Ln(x)dMAfX{K(A,A)dMA,

where K(,X) is some integrable continuous for A=\ function. If
=[AA+ A then [,n(AN)dA = |hln(A) + 5(h) and [, 0| KA N) dAdN
= o(h), ie.,

M(N*(A + k) — N*(\))’ = n(A\)h + 5(h)
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As far as a covariance is concerned, then
cov(N, (4), N, (4%)
im
L—co 2L

whence M(N*(\ + h) — N*QO))N*(\' + h) — N*(\)) = 5(h). Theorem 2 is
proved. W

=ffoAIK(>\’X)d}\dN’AmN =9,
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